Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 172: 106834, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521490

RESUMO

Oxysterol, 25-hydroxycholesterol (25HC), is a potent regulator of immune reactions, its synthesis greatly increases by macrophages during inflammation. We hypothesize that 25HC can have cardioprotective effects by limiting consequences of excessive ß-adrenoceptor (ßAR) stimulation, particularly reactive oxygen species (ROS) production, in mouse atria. Isoproterenol, a ßAR agonist, increased extra- and intracellular levels of ROS. This enhancement of ROS production was suppressed by NADPH oxidase antagonists as well as 25HC. Inhibition of ß3ARs, Gi protein and protein kinase Cε prevented the effect of 25HC on isoproterenol-dependent ROS synthesis. Furthermore, 25HC suppressed isoproterenol-induced lipid peroxidation and mitochondrial ROS generation as well as ROS-dependent component of positive inotropic response to isoproterenol. Additionally, 25HC decreased mitochondrial ROS production and lipid peroxidation induced by antimycin A, a mitochondrial poison. Thus, 25HC exerts antioxidant properties alleviating mitochondrial dysfunction-induced and ßAR-dependent cardiac oxidative damage. In the latter case, 25HC can act via signaling mechanism engaging ß3ARs, Gi protein and protein kinase Cε.

2.
ACS Nano ; 18(9): 7011-7023, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38390865

RESUMO

Ferroptotic cancer therapy has been extensively investigated since the genesis of the ferroptosis concept. However, the therapeutic efficacy of ferroptosis induction in heterogeneous and plastic melanoma has been compromised, because the melanocytic and transitory cell subpopulation is resistant to iron-dependent oxidative stress. Here, we report a phenotype-altering liposomal nanomedicine to enable the ferroptosis-resistant subtypes of melanoma cells vulnerable to lipid peroxidation via senescence induction. The strategy involves the ratiometric coencapsulation of a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor (palbociclib) and a ferroptosis inducer (auranofin) within cRGD peptide-modified targeted liposomes. The two drugs showed a synergistic anticancer effect in the model B16F10 melanoma cells, as evidenced by the combination index analysis (<1). The liposomes could efficiently deliver both drugs into B16F10 cells in a targeted manner. Afterward, the liposomes potently induced the intracellular redox imbalance and lipid peroxidation. Palbociclib significantly provoked cell cycle arrest at the G0/G1 phase, which sensitized auranofin-caused ferroptosis through senescence induction. Meanwhile, palbociclib depleted intracellular glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), further boosting ferroptosis. The proof-of-concept was also demonstrated in the B16F10 tumor-bearing mice model. The current work offers a promising ferroptosis-targeting strategy for effectively treating heterogeneous melanoma by manipulating the cellular plasticity.


Assuntos
Ferroptose , Melanoma , Animais , Camundongos , Melanoma/tratamento farmacológico , Lipossomos/farmacologia , Coenzimas/farmacologia , Auranofina/farmacologia , Peroxidação de Lipídeos
3.
Mol Neurobiol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353924

RESUMO

ß2-Adrenoceptors (ß2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of ß2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that ß2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. ß2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of ß2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the ß2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on ß2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, ß2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of ß2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the ß2-AR signaling on lipid raft integrity in the neuromuscular junctions.

4.
Pflugers Arch ; 476(3): 407-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253680

RESUMO

25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac ß-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to ß-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the ß-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to ß1-AR (but not ß2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the ß1-AR-mediated responses was prevented by selective ß3-AR antagonists as well as inhibitors of Gi protein, Gßγ, G protein-coupled receptor kinase 2/3, or ß-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to ß-AR activation. Thus, 25HC can suppress the ß1-AR-dependent effects via engaging ß3-AR, Gi protein, Gßγ, G protein-coupled receptor kinase, and ß-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial ß-adrenergic signaling.


Assuntos
Adrenérgicos , Átrios do Coração , Hidroxicolesteróis , Camundongos , Animais , Adrenérgicos/metabolismo , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia
5.
Neurochem Res ; 49(2): 453-465, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897557

RESUMO

α2-Adrenoreceptors (ARs) are main Gi-protein coupled autoreceptors in sympathetic nerve terminals and targets for dexmedetomidine (DEX), a widely used sedative. We hypothesize that α2-ARs are also potent regulators of neuromuscular transmission via G protein-gated inwardly rectifying potassium (GIRK) channels. Using extracellular microelectrode recording of postsynaptic potentials, we found DEX-induced inhibition of spontaneous and evoked neurotransmitter release as well as desynchronization of evoked exocytotic events in the mouse diaphragm neuromuscular junction. These effects were suppressed by SKF-86,466, a selective α2-AR antagonist. An activator of GIRK channels ML297 had the same effects on neurotransmitter release as DEX. By contrast, inhibition of GIRK channels with tertiapin-Q prevented the action of DEX on evoked neurotransmitter release, but not on spontaneous exocytosis. The synaptic vesicle exocytosis is strongly dependent on Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), which can be negatively regulated via α2-AR - GIRK channel axis. Indeed, inhibition of P/Q-, L-, N- or R-type VGCCs prevented the inhibitory action of DEX on evoked neurotransmitter release; antagonists of P/Q- and N-type channels also suppressed the DEX-mediated desynchronization of evoked exocytotic events. Furthermore, inhibition of P/Q-, L- or N-type VGCCs precluded the frequency decrease of spontaneous exocytosis upon DEX application. Thus, α2-ARs acting via GIRK channels and VGCCs (mainly, P/Q- and N-types) exert inhibitory effect on the neuromuscular communication by attenuating and desynchronizing evoked exocytosis. In addition, α2-ARs can suppress spontaneous exocytosis through GIRK channel-independent, but VGCC-dependent pathway.


Assuntos
Junção Neuromuscular , Transmissão Sináptica , Camundongos , Animais , Transmissão Sináptica/fisiologia , Junção Neuromuscular/fisiologia , Potássio , Proteínas de Ligação ao GTP , Neurotransmissores/farmacologia
6.
Arch Biochem Biophys ; 749: 109803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37955112

RESUMO

Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.


Assuntos
Acetilcolina , Colesterol Oxidase , Camundongos , Animais , Colesterol Oxidase/metabolismo , Colesterol Oxidase/farmacologia , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Transmissão Sináptica/fisiologia , Junção Neuromuscular/metabolismo , Colesterol/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia
7.
Biochim Biophys Acta Biomembr ; 1865(7): 184197, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394027

RESUMO

Neurotransmitter release from sympathetic terminals is a key avenue for heart regulation. Herein, presynaptic exocytotic activity was monitored in mice atrial tissue using a false fluorescent neurotransmitter FFN511, a substrate for monoamine transporters. FFN511 labeling had similarity with tyrosine hydroxylase immunostaining. High [K+]o depolarization caused FFN511 release, which was augmented by reserpine, an inhibitor of neurotransmitter uptake. However, reserpine lost the ability to increase depolarization-induced FFN511 unloading after depletion of ready releasable pool with hyperosmotic sucrose. Cholesterol oxidase and sphingomyelinase modified atrial membranes, changing in opposite manner fluorescence of lipid ordering-sensitive probe. Plasmalemmal cholesterol oxidation increased FFN511 release upon K+-depolarization and more markedly potentiated FFN511 unloading in the presence of reserpine. Hydrolysis of plasmalemmal sphingomyelin profoundly enhanced the rate of FFN511 loss due to K+-depolarization, but completely prevented potentiating action of reserpine on FFN511 unloading. If cholesterol oxidase or sphingomyelinase got access to membranes of recycling synaptic vesicles, then the enzyme effects were suppressed. Hence, a fast neurotransmitter reuptake dependent on exocytosis of vesicles from ready releasable pool occurs during presynaptic activity. This reuptake can be enhanced or inhibited by plasmalemmal cholesterol oxidation or sphingomyelin hydrolysis, respectively. These modifications of plasmalemmal (but not vesicular) lipids increase the evoked neurotransmitter release.


Assuntos
Fibrilação Atrial , Reserpina , Camundongos , Animais , Reserpina/farmacologia , Esfingomielina Fosfodiesterase , Colesterol Oxidase/farmacologia , Esfingomielinas/farmacologia , Terminações Nervosas , Neurotransmissores/farmacologia , Colesterol/farmacologia
8.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Camundongos , Esclerose Amiotrófica Lateral/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
9.
Life Sci ; 318: 121507, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801470

RESUMO

AIMS: Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS: Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS: Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE: Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.


Assuntos
Esfingomielina Fosfodiesterase , Vesículas Sinápticas , Camundongos , Animais , Vesículas Sinápticas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Transmissão Sináptica , Junção Neuromuscular , Neurotransmissores/metabolismo , Exocitose
10.
Cell Mol Neurobiol ; 43(2): 729-739, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35113291

RESUMO

Nerve terminals contain numerous synaptic vesicles (SVs) whose exo-endocytic cycling maintains neurotransmitter release. SVs may have different properties, thereby constituting separate pools. However, behavior of SV pools remains elusive in many synapses. To fill this gap, we studied the functioning of SV pools at both low- and higher-frequency stimulations utilizing microelectrode recording and dual-labeling of SVs with FM-dyes at the mice motor nerve terminals. It was found that higher-frequency stimulation caused exocytosis of different kinds of SVs. One type of SVs contributed to exocytosis exclusively at intense activities and their exocytotic rate was depended on the order in which these SVs were recovered by endocytosis. Another type of SVs can sustain the release in response to both low- and higher-frequency stimulations, but increasing activity did not lead to enhanced exocytotic rate of these SVs. In addition, depression of neurotransmitter release induced by 20 Hz stimulation occurred independent on previous episode of 10 Hz activity. We suggest that during prolonged stimulation at least two SV pools can operate. One termed "house-keeping" that would be active at different frequencies and the other termed "plug-in" that would respond to increasing activity.


Assuntos
Terminações Nervosas , Vesículas Sinápticas , Camundongos , Animais , Vesículas Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Sinapses , Endocitose/fisiologia , Neurotransmissores , Terminações Pré-Sinápticas
11.
Life Sci ; 310: 121120, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302500

RESUMO

AIMS: Neurotransmitter release requires high energy demands, making the nerve terminals metabolically fragile and susceptible to oxidative stress. ATP-sensitive potassium (KATP) channels can be an important regulator orchestrating the influence of metabolic-related signals on exocytosis. Here, the relevance of ROS in KATP channel-dependent control of neurotransmitter release at the frog neuromuscular junction was studied. METHODS: Microelectrode recordings of end plate potentials at the distal and proximal compartments of nerve terminals as well as fluorescent techniques were used. KEY FINDINGS: Activation of KATP channels in the proximal region suppressed evoked and spontaneous release in a lipid raft-dependent manner. Activation of KATP channels in the distal region reduced solely evoked release which was preserved after lipid raft disruption. Chelation of ROS potentiated the effects of KATP channel activation and unmasked the effects of KATP channel blocker on evoked exocytosis. Activation or inhibition of KATP channels suppressed or enhanced the depressant action of extracellular adenosine on evoked exocytosis. This was accompanied with an increase or decrease in adenosine-induced ROS production, respectively. KATP channel-dependent modulation of adenosine action was halted by antioxidant and NADPH-oxidase inhibitor. Also, activation of KATP channels led to an increase in ROS production suppressing the negative effects of extracellular ATP on evoked release in a ROS-dependent manner. SIGNIFICANCE: KATP channel-mediated modulation of release has specific features in distal and proximal compartments and depends on endogenous ROS levels and lipid raft integrity. Activation of KATP channels suppresses the action of extracellular adenosine and ATP on evoked release by increasing ROS production.


Assuntos
Trifosfato de Adenosina , Junção Neuromuscular , Espécies Reativas de Oxigênio/farmacologia , Trifosfato de Adenosina/farmacologia , Adenosina/farmacologia , Neurotransmissores/farmacologia , Canais KATP
12.
Brain Res ; 1795: 148072, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075465

RESUMO

We investigated the effects of catecholamines, adrenaline and noradrenaline, as well as ß-adrenoceptor (AR) modulators on a resting membrane potential at the junctional and extrajunctional regions of mouse fast-twitch Levator auris longus muscle. The aim of the study was to find which AR subtypes, signaling molecules and Na,K-ATPase isoforms are involved in the hyperpolarizing action of catecholamines and whether this action could be accompanied by changes in the pump abundance on the sarcolemma. Adrenaline, noradrenaline and specific ß2-AR agonist induced hyperpolarization of both junctional and extrajunctional membrane, but the underlying mechanisms were different. In the junctional membrane the hyperpolarization depended on α2 isoform of the Na,K-ATPase and Gi-protein, whereas in the extrajunctional regions the hyperpolarization mainly relied on α1 isoform of Na,K-ATPase and adenylyl cyclase activities. In both junctional and extrajunctional regions, AR activation caused an increase in Na,K-ATPase abundance in the plasmalemma in a protein kinase A-dependent manner. Thus, the compartment-specific mechanisms are responsible for catecholamine-mediated hyperpolarization in the skeletal muscle.


Assuntos
Catecolaminas , ATPase Trocadora de Sódio-Potássio , Adenilil Ciclases/metabolismo , Animais , Catecolaminas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Norepinefrina/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Biochemistry (Mosc) ; 87(6): 524-537, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35790411

RESUMO

Cholesterol is an essential component of plasma membrane and precursor of biological active compounds, including hydroxycholesterols (HCs). HCs regulate cellular homeostasis of cholesterol; they can pass across the membrane and vascular barriers and act distantly as para- and endocrine agents. A small amount of 25-hydroxycholesterol (25-HC) is produced in the endoplasmic reticulum of most cells, where it serves as a potent regulator of the synthesis, intracellular transport, and storage of cholesterol. Production of 25-HC is strongly increased in the macrophages, dendrite cells, and microglia at the inflammatory response. The synthesis of 25-HC can be also upregulated in some neurological disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis, spastic paraplegia type 5, and X-linked adrenoleukodystrophy. However, it is unclear whether 25-HC aggravates these pathologies or has the protective properties. The molecular targets for 25-HC are transcriptional factors (LX receptors, SREBP2, ROR), G protein-coupled receptor (GPR183), ion channels (NMDA receptors, SLO1), adhesive molecules (α5ß1 and ανß3 integrins), and oxysterol-binding proteins. The diversity of 25-HC-binding proteins points to the ability of HC to affect many physiological and pathological processes. In this review, we focused on the regulation of 25-HC production and its universal role in the control of cellular cholesterol homeostasis, as well as the effects of 25-HC as a signaling molecule mediating the influence of inflammation on the processes in the neuromuscular system and brain. Based on the evidence collected, it can be suggested that 25-HC prevents accumulation of cellular cholesterol and serves as a potent modulator of neuroinflammation, synaptic transmission, and myelinization. An increased production of 25-HC in response to a various type of damage can have a protective role and reduce neuronal loss. At the same time, an excess of 25-HC may exert the neurotoxic effects.


Assuntos
Colesterol , Hidroxicolesteróis , Encéfalo/metabolismo , Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Transdução de Sinais
14.
Biomedicines ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892671

RESUMO

For effective transmission of excitation in neuromuscular junctions, the postsynaptic response amplitude must exceed a critical level of depolarization to trigger action potential spreading along the muscle-fiber membrane. At the presynaptic level, the end-plate potential amplitude depends not only on the acetylcholine quanta number released from the nerve terminals in response to the nerve impulse but also on a degree of synchronicity of quanta releases. The time course of stimulus-phasic synchronous quanta secretion is modulated by many extra- and intracellular factors. One of the pathways to regulate the neurosecretion kinetics of acetylcholine quanta is an activation of presynaptic autoreceptors. This review discusses the contribution of acetylcholine presynaptic receptors to the control of the kinetics of evoked acetylcholine release from nerve terminals at the neuromuscular junctions. The timing characteristics of neurotransmitter release is nowadays considered an essential factor determining the plasticity and efficacy of synaptic transmission.

15.
Neuropharmacology ; 209: 109021, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245509

RESUMO

G protein-gated inwardly rectifying potassium (GIRK) channels are one of the main regulators of neuronal excitability. Activation of GIRK channels in the CNS usually leads to postsynaptic inhibition. However, the function of GIRK channels in the presynaptic processes, notably neurotransmitter release form motor nerve terminals, is yet to be comprehensively understood. Here, using electrophysiological and fluorescent approaches, the role of GIRK channels in neurotransmitter release from frog motor nerve terminals was studied. We found that the inhibition of GIRK channels with nanomolar tertiapin-Q synchronized exocytosis events with action potential but suppressed spontaneous and evoked neurotransmitter release, as well as Ca2+ transient and membrane permeability for K+. The action of GIRK channel inhibition on evoked neurotransmission was prevented by selective antagonist of voltage-gated Ca2+ channels of L-type. Furthermore, the effects of muscarinic acetylcholine receptor activation on neurotransmitter release, Ca2+ transient and K+ channel activity were markedly modulated by inhibition of GIRK channels. Thus, at the motor nerve terminals GIRK channels can regulate timing of neurotransmitter release and be a positive modulator of synaptic vesicle exocytosis acting partially via L-type Ca2+ channels. In addition, GIRK channels are key players in a feedback control of neurotransmitter release by muscarinic acetylcholine receptors.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Junção Neuromuscular , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Neurotransmissores/farmacologia , Receptores Muscarínicos , Transmissão Sináptica
16.
Life Sci ; 296: 120433, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219696

RESUMO

AIMS: Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: "full-collapse" or "kiss-and-run". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal. METHODS: Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release. A fluorescent dye FM1-43 and its quenching with sulforhodamine 101 were utilized to visualize synaptic vesicle recycling. KEY FINDINGS: An increase in the frequency of stimulation led to a decrease in the rate of FM1-43 unloading despite the higher number of quanta released. High frequency activity promoted neurotransmitter release via the kiss-and-run mechanism. This was confirmed by experiments utilizing (I) FM1-43 dye quencher, that is able to pass into the synaptic vesicle via fusion pore, and (II) loading of FM1-43 by compensatory endocytosis. Noradrenaline and specific α2-adrenoreceptors agonist, dexmedetomidine, controlled the mode of synaptic vesicle recycling at high frequency activity. Their applications favored neurotransmitter release via full-collapse exocytosis rather than the kiss-and-run pathway. SIGNIFICANCE: At the diaphragm neuromuscular junctions, neuronal commands are translated into contractions necessary for respiration. During stress, an increase in discharge rate of the phrenic nerve shifts the exocytosis from the full-collapse to the kiss-and-run mode. The stress-related molecule, noradrenaline, restricts neurotransmitter release in response to a high frequency activity, and prevents the shift in the mode of exocytosis through α2-adrenoceptor activation. This may be a component of the mechanism that limits overstimulation of the respiratory system during stress.


Assuntos
Exocitose/fisiologia , Junção Neuromuscular/fisiologia , Receptores Adrenérgicos/metabolismo , Acetilcolina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Dexmedetomidina/farmacologia , Potenciais Evocados/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Corantes Fluorescentes/farmacocinética , Camundongos Endogâmicos BALB C , Junção Neuromuscular/efeitos dos fármacos , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Receptores Adrenérgicos alfa 2/metabolismo , Vesículas Sinápticas/metabolismo
17.
Free Radic Biol Med ; 174: 121-134, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391813

RESUMO

Inflammatory reactions induce changes in the neuromuscular system. The mechanisms underlying this link are unclear. Besides cytokines and reactive oxygen species (ROS), production of an antiviral oxysterol 25-hydroxycholesterol (25HC) by immune cells is quickly increased in response to inflammation. Hypothetically, 25HC could contribute to regulation of neuromuscular activity as well as redox status. We found that 25HC (0.01-10 µM) can bidirectionally modulate neurotransmission in mice diaphragm, the main respiratory muscle. Low concentrations (≤0.1 µM) of 25HC reduced involvement of synaptic vesicles (SVs) into exocytosis during 20-Hz activity, whereas higher inflammatory-related concentrations (≥1 µM) had a profound potentiating effect on SV mobilization. The latter stimulatory action of 25HC was accompanied by increase in Ca2+ release from intracellular stores via IP3 receptors. Both increase in SV mobilization and [Ca2+]in were suppressed by a specific antagonist of liver X receptors (LXRs). These receptors formed clusters within the synaptic membranes in a lipid raft-dependent manner. Either raft disruption or intracellular Ca2+ chelation prevented 25HC-mediated acceleration of the exocytotic rate. The same action had inhibition of estrogen receptor α, Gi-protein, Gßγ, phospholipase C and protein kinase C. Additionally, 1 µM 25HC upregulated ROS production in a Ca2+-dependent way and an antioxidant partially decreased the exocytosis-promoting effect of 25HC. Thus, 25HC has prooxidant properties and it is a potent regulator of SV mobilization via activation of lipid raft-associated LXRs which can trigger signaling via estrogen receptor α - Gi-protein - Gßγ - phospholipase C - Ca2+ - protein kinase C pathway. 25HC-mediated increase in ROS may modulate this signaling.


Assuntos
Oxisteróis , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Transdução de Sinais , Transmissão Sináptica
18.
Neurotherapeutics ; 18(3): 2040-2060, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34235635

RESUMO

Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.


Assuntos
Acetilcoenzima A/metabolismo , Encéfalo/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Proteínas do Citoesqueleto/metabolismo , Esteróis/metabolismo , Acetilcoenzima A/genética , Animais , Colesterol 24-Hidroxilase/genética , Proteínas do Citoesqueleto/genética , Masculino , Metabolômica/métodos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/fisiologia
19.
J Physiol ; 599(11): 2803-2821, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823063

RESUMO

KEY POINTS: The developmental changes of the caval (SVC) and pulmonary vein (PV) myocardium electrophysiology are traced throughout postnatal ontogenesis. The myocardium in SVC as well as in PV demonstrate age-dependent differences in the ability to maintain resting membrane potential, to manifest automaticity in a form of ectopic action potentials in basal condition and in responses to the adrenergic stimulation. Electrophysiological characteristics of two distinct types of thoracic vein myocardium change in an opposite manner during early postnatal ontogenesis with increased proarrhythmicity of pulmonary and decreased automaticity in caval veins. Predisposition of PV cardiac tissue to proarrhythmycity develops during ontogenesis in time correlation with the establishment of sympathetic innervation of the tissue. The electrophysiological properties of caval vein cardiac tissue shift from a pacemaker-like phenotype to atrial phenotype in accompaniment with sympathetic nerve growth and adrenergic receptor expression changes. ABSTRACT: The thoracic vein myocardium is considered as a main source for atrial fibrillation initiation due to its high susceptibility to ectopic activity. The mechanism by which and when pulmonary (PV) and superior vena cava (SVC) became proarrhythmic during postnatal ontogenesis is still unknown. In this study, we traced postnatal changes of electrophysiology in a correlation with the sympathetic innervation and adrenergic receptor distribution to reveal developmental differences in proarrhythmicity occurrence in PV and SVC myocardium. A standard microelectrode technique was used to assess the changes in ability to maintain resting membrane potential (RMP), generate spontaneous action potentials (SAP) and adrenergically induced ectopy in multicellular SVC and PV preparations of rats of different postnatal ages. Immunofluorescence imaging was used to trace postnatal changes in sympathetic innervation, ß1- and α1A-adrenergic receptor (AR) distribution. We revealed that the ability to generate SAP and susceptibility to adrenergic stimulation changes during postnatal ontogenesis in an opposite manner in PV and SVC myocardium. While SAP occurrence decreases with age in SVC myocardium, it significantly increases in PV cardiac tissue. PV myocardium starts to demonstrate RMP instability and proarrhythmic activity from the 14th day of postnatal life which correlates with the appearance of the sympathetic innervation of the thoracic veins. In addition, postnatal attenuation of SVC myocardium automaticity occurs concomitantly with sympathetic innervation establishment and increase in ß1-ARs, but not α1A-AR levels. Our results support the contention that SVC and PV myocardium electrophysiology change during postnatal development, resulting in higher PV proarrhythmicity in adults.


Assuntos
Fibrilação Atrial , Veias Pulmonares , Animais , Catecolaminas , Átrios do Coração , Miocárdio , Ratos , Veia Cava Superior
20.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668129

RESUMO

Muscle disuse and denervation leads to muscle atrophy, but underlying mechanisms can be different. Previously, we have found ceramide (Cer) accumulation and lipid raft disruption after acute hindlimb suspension (HS), a model of muscle disuse. Herein, using biochemical and fluorescent approaches the influence of unilateral denervation itself and in combination with short-term HS on membrane-related parameters of rat soleus muscle was studied. Denervation increased immunoexpression of sphingomyelinase and Cer in plasmalemmal regions, but decreased Cer content in the raft fraction and enhanced lipid raft integrity. Preliminary denervation suppressed (1) HS-induced Cer accumulation in plasmalemmal regions, shown for both nonraft and raft-fractions; (2) HS-mediated decrease in lipid raft integrity. Similar to denervation, inhibition of the sciatic nerve afferents with capsaicin itself increased Cer plasmalemmal immunoexpression, but attenuated the membrane-related effects of HS. Finally, both denervation and capsaicin treatment increased immunoexpression of proapoptotic protein Bax and inhibited HS-driven increase in antiapoptotic protein Bcl-2. Thus, denervation can increase lipid raft formation and attenuate HS-induced alterations probably due to decrease of Cer levels in the raft fraction. The effects of denervation could be at least partially caused by the loss of afferentation. The study points to the importance of motor and afferent inputs in control of Cer distribution and thereby stability of lipid rafts in the junctional and extrajunctional membranes of the muscle.


Assuntos
Adaptação Fisiológica , Membrana Celular/metabolismo , Ceramidas/metabolismo , Elevação dos Membros Posteriores/fisiologia , Microdomínios da Membrana/fisiologia , Denervação Muscular , Músculo Esquelético/fisiologia , Animais , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...